Click Fraud Monitoring
Select Page

Chiropractic Examination

Chiropractic Examination:

An initial chiropractic examination for musculoskeletal disorders will typically have four parts: a consultation, case history, and physical examination. Laboratory analysis and X-ray examination may be performed. Our office provides additional Functional and Integrative Wellness Assessments in order to bring greater insight into a patients physiological presentations.

Consultation:
The patient will meet the chiropractor which will assess and question a brief synopsis of his or her lower back pain, such as:
Duration and frequency of symptoms
Description of the symptoms (e.g. burning, throbbing)
Areas of pain
What makes the pain feel better (e.g. sitting, stretching)
What makes the pain feel worse (e.g. standing, lifting).
Case history. The chiropractor identifies the area(s) of complaint and the nature of the back pain by asking questions and learning more about different areas of the patient’s history, including:
Family history
Dietary habits
Past history of other treatments (chiropractic, osteopathic, medical and other)
Occupational history
Psychosocial history
Other areas to probe, often based on responses to above questions.

Physical examination:
 We will utilize a variety of methods to determine the spinal segments that require chiropractic treatments, including but not limited to static and motion palpation techniques determining spinal segments that are hypo mobile (restricted in their movement) or fixated. Depending on the results of the above examination, a chiropractor may use additional diagnostic tests, such as:
X-ray to locate subluxations (the altered position of the vertebra)
A device that detects the temperature of the skin in the paraspinal region to identify spinal areas with a significant temperature variance that requires manipulation.

Laboratory Diagnostics:
 If needed we also use a variety of lab diagnostic protocols in order to determine complete clinical picture of the patient. We have teamed up with the top labs in the city in order to give our patients the optimal clinical picture and appropriate treatments.


Rectus Femoris Strain Management

Rectus Femoris Strain Management

The rectus femoris muscle attaches to the pelvis and just below the knee as it is one of four muscles found at the front part of the thigh. It functions by extending the knee and flexing the hip. The rectus femoris muscle is made up of fibers which adapt to quick action. Rectus femoris muscle strain is caused by forceful movements, such as kicking a ball or when beginning to sprint, and it is particularly vulnerable to stress and pressure.

Painful symptoms generally manifest at the top of the thigh after the rectus femoris muscle suffers a strain or tear. In severe cases, the health issue may even become noticeable if the tissue is completely ruptured. Fortunately, complete tears are rare. Healthcare professionals will commonly use an MRI scan to diagnose the extent of the sports injury. Proper diagnosis and treatment are ess

Developmental Dysplasia of the Hip

Developmental Dysplasia of the Hip

The hip is commonly described as a “ball-and-socket” type joint. In a healthy hip, the ball at the top end of the thighbone, or femur, should fit firmly into the socket, which is part of the large pelvis bone. In babies and children with developmental dysplasia, or dislocation, of the hip, abbreviated as DDH, the hip joint may not have formed normally. As a result, the ball of the femur might easily dislocate and become loose from the socket.

Although DDH is often present from birth, it could also develop during a child’s first year of life. Recent research studies have demonstrated that infants whose thighs are swaddled closely with the hips and knees straight are at a higher risk for developing DDH. Because swaddling has become increasingly popular, it is essential for parents to understand how to swaddle their babies safely, and the

Evaluation of the Patient with Hip Pain

Evaluation of the Patient with Hip Pain

Hip pain is a well-known health issue which can be caused by a wide array of problems, however, the site of the patient’s hip pain can provide valuable information regarding the underlying cause of this common health issue. Pain on the inside of the hip or groin can be due to problems within the hip joint itself while pain on the outside of the hip, upper thigh and outer buttocks may be due to problems with the ligaments, tendons and muscles, among other soft tissues, surrounding the hip joint. Furthermore, hip pain can be due to other injuries and conditions, including back pain. 

Abstract

Hip pain is a common and disabling condition that affects patients of al

Achondroplasia Clinical Presentation

Achondroplasia Clinical Presentation

Achondroplasia is a genetic disorder that leads to dwarfism. In those with the condition, the legs and arms are short, while the chest is generally of regular length. Those affected have an average adult height of 131 centimetres (4 ft 4 in) for males and 123 centimetres (4 feet ) for females. Other features include a prominent forehead and an enlarged head. Intelligence is typically considered normal in people with achondroplasia. The condition affects approximately 1 in 27,500 individuals.

Diagnosis for Achondroplasia

Achondroplasia is the result of a mutation in the fibroblast growth factor receptor 3 (FGFR3) gene. This occurs during early development as a new mutation. It is also inherited from the parents in an autosomal dominant way. Those with two affected genes do not survive.

Classifying Spondylolisthesis

Classifying Spondylolisthesis

Spondylolisthesis occurs when a vertebra of the spine slips forward over the vertebra below it. Spondylolisthesis can be categorized as: congenital spondylolisthesis, which means the disorder is present at birth; isthmic spondylolisthesis, which occurs when a defect occurs in a supportive vertebral structure of the spine; and degenerative spondylolisthesis, which is more common and is frequently associated with degenerative disc disease, or DDD, where the intervertebral discs lose hydration with age.

Development of Spondylolisthesis

The spinal column is exposed to directional pressures while it carries, absorbs, and also distributes most of the fat of the body throughout physical activities and during rest. To put it differently, while the spine is consuming and carrying body fat,

Scoliosis Clinical Presentation

Scoliosis Clinical Presentation

Scoliosis is a medical condition where an individual’s spine is diagnosed with an abnormal curve. The natural curvature of the spine is generally “S” shaped when viewed laterally, or from the side, and it should appear straight when viewed from the front or back. In many instances, the abnormal curvature of the spine with scoliosis increases over time, while in others, it remains the same. Scoliosis can cause a variety of symptoms.

Scoliosis affects approximately 3 percent of the population. The cause of most instances is unknown, however, it is believed to involve a mixture of environmental and genetic variables. Risk factors include having relatives with the same problem. It may also develop due to other health issues, such as Marfan syndrome, cerebral palsy, muscle spasms, and tumors like neurofibromatosis.  Scoliosis commonly develops

Rheumatoid Arthritis of the Cervical Spine

Rheumatoid Arthritis of the Cervical Spine

Rheumatoid arthritis, or RA, is a chronic health issue which affects approximately 1 percent of the population in the United States. RA is an autoimmune disorder that causes the inflammation and degeneration of the synovial tissue, specific cells and tissue which form the lining of the joints within the human body. Rheumatoid arthritis may and generally does affect every joint in the body, especially as people get older. RA commonly develops in the joints of the hands and feet, severely restricting an individual’s ability to move, however, those with significant disease in the spine are at risk of damage like paraplegia. Rheumatoid arthritis of the spine is frequent in three areas, causing different clinical problems.

The first is basilar invagination, also referred to as cranial settling or superior migration of the odontoid, a

Imaging Diagnostics for Flexion Teardrop Fractures

Imaging Diagnostics for Flexion Teardrop Fractures

A teardrop fracture is caused when the anteroinferior aspect of a cervical vertebral body is damaged due to flexion of the spine together with vertical compression. The fracture throughout the body is also associated with deformity of the human body and subluxation or dislocation of the facet joints. A teardrop fracture is generally associated with a spinal cord injury due to the displacement of the anterior portion of the body into the spine.

The flexion teardrop fracture shouldn’t be confused with a similar-looking vertebral fracture called “expansion teardrop fracture”. Both usually happen in the cervical spine, but as their names indicate, they result from other mechanisms (flexion-compression vs. hyperextension). Both are linked to a small fragment being broken apart from the anteroinferior corner of the affected vertebra. Flexion teardrop fractures normally involve instability in most elements of the ba

Vertebral Fracture Diagnosis Imaging Studies

Vertebral Fracture Diagnosis Imaging Studies

A vertebral fracture is a common health issue which can often cause bone fragments to damage the spinal chord and nerve roots. Broken bones can occur due to trauma or injury from automobile accidents, slip-and-fall accidents, or sports injuries, among other causes. Depending on how severe the vertebral fracture is, individuals may have difficulty performing everyday activities. The purpose of the article below is to demonstrate and discuss vertebral fracture diagnosis imaging studies and their results.

Practice Essentials

Vertebral fractures of the thoracic and lumbar spine are usually associated with major trauma and can cause spinal cord damage that results in neural deficits. Each vertebral region has unique anatomical and functional features that result in specific injuries.

Spine Trauma Imaging Diagnostics Evaluation

Spine Trauma Imaging Diagnostics Evaluation

Imaging diagnostics are an essential element in the evaluation of spine trauma. Over the last few decades, the rapid evolution of imaging technology has tremendously changed the assessment and treatment of spinal injuries. Imaging diagnostics utilizing CT and MRI, among others, are helpful in the acute and the chronic settings. Spinal cord and soft-tissue injuries are best evaluated by magnetic resonance imaging, or MRI, whereas computed tomography scanning, or CT scans, best evaluate spinal trauma or spine fracture. The purpose of the article below is to demonstrate the significance of imaging diagnostics in spine trauma.

Cervical Spine Fracture Evaluation

Practice Essentials

Approximately 5-10% of unconscious patients who

Imaging Diagnostics of Abnormalities of the Spine

Imaging Diagnostics of Abnormalities of the Spine

Imaging diagnostics of the spine consist from radiographies to computed tomography scanning, or CT scans, in which CT is utilized in conjunction with myelography and most recently with magnetic resonance imaging, or MRI. These imaging diagnostics are being used to determine the presence of abnormalities of the spine, scoliosis, spondylolysis and spondylolisthesis. The following article describes various imaging modalities and their application in the evaluation of common spinal disorders described.

Cervical Spine Radiographs in the Trauma Patient

Cervical Spine Radiographs in the Trauma Patient

While computed tomography scanning, or CT scans, of the cervical spine are frequently utilized to help diagnose neck injuries, simple radiographs are still commonly performed for patients who have experienced minor cervical spine injuries with moderate neck pain, such as those who have suffered a slip-and-fall accident. Imaging diagnostic assessments may reveal underlying injuries and/or aggravated conditions to be more severe than the nature of the trauma. The purpose of the article is to demonstrate the significance of cervical spine radiographs in the trauma patient. 

Abstract

Significant cervical spine injury is very unlikely in a case of trauma if the patient has normal mental status (including no drug or alcohol use) and no neck pain, no tenderness on neck palpation, no neurologic

Imaging the Spine in Arthritis: a Pictorial Review

Imaging the Spine in Arthritis: a Pictorial Review

Many types of arthritis can affect the structure and function of the muscles, bones and/or joints, causing symptoms such as, pain, stiffness and swelling. While arthritis can commonly affect the hands, wrists, elbows, hips, knees and feet, it can also affect the facet joints found along the length of the spine. One of the most well-known types of arthritis, known as rheumatoid arthritis or RA, is a chronic inflammatory disease of the joints which occurs when the human body’s own immune system attacks the

The Role of Emergency Radiology in Spinal Trauma

The Role of Emergency Radiology in Spinal Trauma

Spinal trauma consists of spine fractures, or spinal fractures, and spinal cord injuries. Approximately 12,000 spinal trauma cases are reported in the United States every year. While the most prevalent causes of spinal cord injuries and spine fractures are automobile accidents and falls, spinal trauma can also be attributed to assault, sports injuries, and work-related accidents. Diagnosis of spinal trauma includes imaging and assessment of nerve function, such as reflex, motor, and sensation. The following article discusses the role of emergency radiology in spinal trauma. Chiropractic care can help provide diagnostic evaluations for spinal trauma.

Abstract

Spinal trauma is